Bellows and bellow coupling are not springs, in that most of their deflections produce bending stresses in excess of the materials' yield strength. Understanding how various materials perform and their capabilities in this "plastic" deformation region requires years of experience and design equations based upon this empirical understanding.
That bellows or bellow coupling routinely operate "plastically" should not be a cause for concern, since most of the materials from which bellows are made share similar highly ductile characteristics. In particular, the endurance limit of these materials, which can be loosely described as the stress at which failure will occur at ten million cycles of repeated stressing, is nearly the same as their yield stress, or the point at which permanent deformation will occur. A bellows which is required to withstand 3000 cycles of a given deflection and pressure, and which ultimately fails after 10,000 cycles, has certainly demonstrated more than acceptable performance. However, it has experienced, during each and every cycle, bending stresses far in excess of the endurance limit and therefore the yield stress, and once deflected, would not have returned on their own to their original undeflected length or shape, as a spring is expected to do. In other words, they would have "taken a set."
Most bellows fail by circumferential cracking resulting from cyclic bending stresses, or fatigue. Since the best design is a compromise, or balance, between pressure strength and flexibility considerations, it can be concluded that their designs have had lower margins of safety regarding fatigue than they had regarding pressure strength. The years of experience of the engineers who developed these bellows assures that the designs contained in this catalog and those offered to satisfy customer specifications, will have the performance reliability which yields trouble free, safe use.